

Advanced Measurement Solutions

Advanced technologies for a more efficient world

www.AdvancedMeasurementSolutions.com

Scenario

The present increased globalized competition requires a careful cost management policy. The high impact of fuel costs on fleet management overall costs imposes an additional challenge on ship owners. For this reason fuel consumption reduction is one of the most important goal to achieve. Fuel consumption unfortunately depends on many, difficultly controllable, parameters such as: ship speed, trim and list, meteorological conditions, engine maintenance, fuel quality, cooling system adjustment, air temperature, humidity and pressure.

International regulations (e.g. MARPOL Annex VI) fixed new more restrictive limits for combustion emissions level and composition (mainly for CO_2 , SO_3 and NO_3).

Maintenance represents another strategic issue in fleet management costs.

For all the above mentioned reasons the reduced efficiency of the ship propulsion system must be immediately detected and rectified.

To face these demanding issues it is of the utmost importance to base fleet management on the continuous monitoring of the ship propulsion system performance parameters.

Advanced Measurement Solutions LTM2214 line of sight single beam laser torque meter

can be effectively used to solve all these problems.

System description

The LTM2214 is the most recent line of sight single beam laser torque meter (LOS-SBL) developped by Advanced Measurement Solutions. The LTM2214 main unit is available in a rugged IP55 steel box for bulkhead mounting.

LOS-SBL technology overview

A line of sight single beam laser torque meter is essentially composed of three parts: two dynamically balanced slitted discs which are mounted on the shaft with a known reciprocal angular displacement a laser beam emitter, and a laser beam receiver. The laser beam passes through the slits of the two discs and is detected by the receiver. As the shaft rotates the beam is periodically interrupted by the apertures of the slitted discs thus generating laser pulses which are detected by the receiver. The variation of pulse lengths compared to the length at zero torque (at the same angular speed) is proportional to the torque applied to the shaft.

Advantages of LOS-SBL technology

The line of sight single beam laser (LOS-SBL) technology, developed and patented by Advanced Measurement Solutions, represents a quantum leap in torque measurement. It completely eliminates errors induced by the difficulty of obtaining exact positioning of magnetic pick ups in toothed discs systems, or of

optical sensors in multiple beam laser systems, and fiber optics guided implementations.

With the LOS-SBL technology. there is no contact between the components mounted on the shaft and the rest of the system (e.g. no slip ring is present), and no electronics is mounted on the shaft (as in strain gauges systems using radio waves to transmit data from the electronics mounted on the shaft to the rest of the system)

Consequently the LTM2214 is not influenced by temperature variations and centrifugal forces and can be used even at high speeds.

LTM2214 main features

The LTM2214 torque calculation is completely digital, thus eliminating the drifts and inaccuracies which are typical of analog systems requiring periodical adiustment.

The LTM2214 surpasses other torque metering technologies in terms of reliability, repeatability, accuracy and resolution.

The LTM2214 standard accuracy is better than 0.7%.

The LTM2214 includes a fuel meter input for real time fuel oil consumption (FOC) and specific fuel oil consumption (SFOC) calculations.

Warnings and alarms can be freely assigned by the user to all measured data.

All these features allow the LTM2214 to optimize maintenance costs (maintenance could be carried out when the preset alarm threshold is exceed) or to be used as a system performance monitor (to reduce fuel consum-ption or increase speed), to reduce CO₂,

SO_x and NO_x emissions, or to reduce shaftline stresses. RPM, torque, power, instant fuel consumption (FOC), specific fuel con-sumption (SFOC), energy, total revolu-tions are calculated in real time by the LTM2214 32 bits digital system. Using several LTM2214 systems

it is possible to monitor several shaftlines at the same time.

Time/frequency domain analysis

The LTM2214 system provides the vibrotorsional analysis in time and frequency domains, using the software tools available from Advanced Measurement Solutions.

Remote control utility

The LTM2214 system includes a Windows remote control utility for PC.

The LTM2214 has two communication ports (RS232 and RS422). NMEA0183 (shipborne electronics standard) plus custom communication protocols are available.

Typical system implementation

The LTM2214 can be used as a stand alone system, can be integrated in a machinery automation system, or used as a remote diagnostic system controlled via a satellite link.

SD Card data storage

Data storage on a SD card is also included (for data logging, black box, or vibrotorsional analysis). SD data logging can exceed

months. SD Card data can be downloaded remotely via a serial link. Both SDSC and SDHC cards are supported.

Installation

An important advantage of the LTM2214 is that its installation does not require any shaftline interruption or modification.

Consequently the LTM2214 installation costs and time are very low. The LTM2214 is thus ideal for retrofitting.

Accessories and Spares

A complete range of accessories and spare parts are available and can be ordered via web or email.

Patents/Trademarks

Line of sight single beam laser torque metering technology is patented by Advanced Measurement Solutions The name "Advanced Measurement Solutions" and the relevant logo are registered trademarks of Advanced Measurement Solutions.

dvanced Measuremer	t Solutions	CONFIGURATION MOD
M2214 Laser Torque Me	eter	Connection state
rchanical nerapeters	- SD Card setup - BTC setup	Connect
interce between decr (mm)s 820.1	C SD Card off @ SD Card on C BTC o	ft (* RTC op Disconnect
aft diam. ext / int(mm)= 400.0 / 0.0	Sampling interval (sec)= 5 Date (DUM	Config. selection -
ung module (N/sqmm)= 84000	Min RPM threshold (RPM)= 50 Day of we	N: Sunday RAM loaded
ximun shaft speed (RPM)+ 160	-Fuel input setup	MM:SS)= 12:30:20
simum engine power (8M)= 22000	C Fuel input off C Fuel input on	User 0 (Default)
and Constituted In Constant	Input type: 4/420mA	setup (do not mostly)
	Pulsette 1000 C Port 0 c	.ff (* Port 0 on
torsion Coefficient+ 1.0000	Volt, nA for the 1.0000 Port 0 spec	d (lb/sec)= 115200 User 2
nse of rotation: Counterclockwise	Fuel density (kgR)= 850.0000	eff G Port 1 on
celaneous parameters	LCD display setup	
antiar manipul (unar) = 0.0168588	C LCD off C LCD on	User 4
	LCD mode: R,D,P,T Serial form	ac Custom1
creative (sec.)= 0.5	Backlight intensity (%)= 500 Miscellaneo	us infoUser 5
index of sits= 180	LCD language: English @ Backup	battery present User 6
aperture (dear)a	System Metric C Backup	bettery NOT present
ale detween discs (dear.)+ 0.5000	Scale factor: x1000 Selected co	onfiguration: 0 SRAM
Calculation from measured values	Alarms setup	
Calculation from cubic equation	OFF Relay1 Relay2 Relay3 Buzzer	Set point
er coefficient (1-120)* 6	RPM. FEEE	160 RPM 1
is security equilibrium.	Torque: 🔽 🗖 🗖 🗖	1000000 Nn Duzzer Log Mode
oetficient & (2:3) * 1000= 0.0000	Power: P F F F F	12000000 WV enable
anti-west B (x/2) 1 1000= 0.0000		Console Mode
	Specific consum: M F F F F F	000000000 Entertient
oethcient C (x*1)*1000# 0.0000		Temperature E-a

LTM2214-RCU (Remote Control Utility) configuration mode

Agent:

LTM2214 main unit

For more detailed information on all our products visit our web site at: www.AdvancedMeasurementSolutions.com

or contact us at info@AdvancedMeasurementSolutions.com

Advanced Measurement Solutions

LTM2214 – Laser Torque Meter

Line of sight single beam laser torque metering system

www.AdvancedMeasurementSolutions.com